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theoretical values; the approximate values, incidentally,
coincide with the exact ones.

VL

It is shown that, first, approximate propagation con-
stants of circular waveguide modes agree well with exact
ones when the conductivity of the waveguide wall is large
(6> we) and the skin depth is smaller than the radius of
the cylinder; second, that the attenuation of the TM,,
mode is constant, i.e., independent of the material con-
stants of the external medium and frequencies that are
much lower than the cutoff frequency. The second result
turns out to make the TM;, mode the most suitable for
circular precision attenuators in the region where the at-
tenuation of the dominant HE,, mode varies with
frequency.

CONCLUSION
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Scattering of the TE,, and TM,, Modes on
Transverse Discontinuities in a Rod
Dielectric Waveguide— Application to the
Dielectric Resonators

PHILIPPE GELIN, SERGE TOUTAIN, PATRICK KENNIS, aAND JACQUES CITERNE

Abstract— Our purpose is to determine the resonance frequency to-
gether with the radiation quality factor of dielectric resonators. To do that,
the reflection and the scattering properties of the TEy; and TM,, modes,
incident on an abruptly ended dielectric rod, are analyzed. After the
building of the complete mode spectrum on each side of the discontinuity,
the continuity relations in the discontinuity plane associated with the
orthogonality properties lead to a coupled integral equation system. That
one is solved by means of an iterative procedure, providing all the char-
acteristics of the discontinuity (reflection or coupling coefficients, radiation
losses). Then, these solutions are used to determine the resonant frequency
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and the radiation quality factor of cylindrical resonators which are consid-
ered as waveguide lengths between two interacting discontinuities.

I. INTRODUCTION

N THE LAST FEW YEARS, the availability of dielec-

tric materials with high relative permittivity has given a
great impact on the use of dielectric resonators in micro-
wave integrated circuits (passband filters, stabilized solid-
state sources).

The concept of dielectric resonator has been proposed in
[1] as far back as 1939. The first analysis of the magnetic
dipole resonance of cylindrical dielectric resonators of very
high permittivity was treated under the assumption that all
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the cavity boundary surfaces are magnetic walls [2], [3].
This hypothesis did not agree with the experimental results.
So the theory has been improved in [4]-[6] by considering
only the extended cylindrical boundary surface as a mag-
netic wall, the fields decreasing from the flat surfaces
outside the resonator in a restricted part of the space. A
more satisfactory approach [7], [8] consists in having the
field leakage through the cylindrical surface into regions 4
and 5 (see Fig. 1) and through the flat surfaces into regions
2 and 3. At this stage of the study, for the high permittivi-
ties, the calculated and experimental resonant frequencies
are in very good agreement though these methods do not
take into account the electromagnetic fields in the shaded
areas. Nevertheless, no information on the radiation losses
of this device can be expected. Only the asymptotic solu-
tion proposed by Verplanken [9], [10] allows the determina-
tion of the radiation quality factor and takes into account
the field penetration in the whole space outside the resona-
tor.

In this paper, we present a quite different and new
analysis of the cylindrical resonator. This analysis proceeds
in two steps. First, we study the electromagnetic behavior
of an abruptly ended dielectric rod in the two cases which
are presented in Fig. 2, with incident TE,, and TM,,
modes. The technique which is used consists of transform-
ing the continuity relations obtained by matching the
transverse electromagnetic fields at the discontinuity inter-
face into coupled singular integral equations. Then, these
equations are solved via the conventional Neuman series
solution [11]-]13]. In a second step, we take into account
the interaction between such discontinuities in order to
determine the resonant frequency and the radiation quality
factor of dielectric resonators.

II. DISCONTINUITY ANALYSIS

Our purpose is to derive the resonant frequencies to-
gether with the radiation Q-factors of the magnetic and
electric dipole mode (TE,5, TM,,5) of a cylindrical dielec-
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tric resonator. The trapped waves for the “on substrate”
resonator are reflected by two types of discontinuities: the
abruptly ended discontinuity and the substrate plugged
discontinuity [Fig. 2].

We focus our attention on the substrate plugged rod
configuration, as shown in Fig. 2, which can be changed
into an abruptly ended one by choosing L=0o0 and ¢,; =1.
The waves are incident from the left on the discontinuity,
and the problem is to find the reflection and the scattering
coefficients of these incident waves. For brevity’s sake,
only the TE, excitation is treated in detail. The extension
to the TM,, case presents no additional difficulty.

In the discontinuity plane z=0, we have to match the
tangential electric and magnetic fields which are azimuthal
(subscript 8) and radial (subscript r), respectively. The
continuity relations can be expressed as

E, [Ea [ E;, Ei(e) |
a il ey a, H + q’(p)

|t 2 f @ i |
incident reﬂected reflected continuous

K guided modes # modes

% [ Ei* (o) | o (p)

— t+ d + t—
foq (o) (o) p foq (p) H, ()

transmitted continuous modes

The fields of the left-hand side of the above equation is a
superposition of the incident guided TE,; mode (super-
script i), of the reflected TE, guided modes (n>1), and of
the reflected continuous TE modes (superscript r) in region
I. On the right-hand side of this equation, we have a
superposition of the transmitted continuous TE modes in
region II (superscript ¢+ for the modes incident towards
the metallic plane, superscript — for the others reflected
on the metallic plane). The constant g, is the reflection
coefficient of the incident TE,, mode while the constants
a, (n>1) are the coupling coefficients of the incident
mode on the reflected and guided TE, modes in region 1.

The functions ¢’(p) are the coupling amplitudes of the
backward-scattered continuous modes in region 1. Back-
ward and forward coupling amplitudes of transmitted con-
tinuous modes in region II are denoted by functions ¢*(p)
and ¢'" (p), respectively. The variable p is both the trans-
verse wavenumber outside the rod in region I and the
transverse wavenumber inside the dielectric plug. If we
denote B(p) and B,(p) the phase constants of the continu-
ous modes in region I and in region II, respectively, then
these transverse wavenumbers can be defined as

p?=kZ—B*p) or p*=ki-e,—B¥p),
with kg =wyeqg .

The boundary condition at the metallic plane (z=L),
provides a simple relation between functions ¢’*(p) and
4" (p), namely

g (p)=—q""(p)-exp(—2,B:(p)L).

If we introduce an indicator A, with A=1 if the metallic
plane exists, and A=0 if the metallic plane is removed, we
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can treat the abruptly ended circular dielectric waveguide
together with the substrate plugged discontinuity by rewrit-
ing the above boundary condition as

4" (0)=—q""(p)-A-exp(—2,8,(p)L).

Taking account of the simple relations in the two regions
between the backward and forward electric and magnetic
fields [see Appendix], the general mode matching equations
at z=0 can, consequently, be written as follows:

1+a, a, ;
Bi(l—a )]E01+n§1 nn ]E0n
=|4q'(p) .
+/<; | —B(p)a’(p) Es(p)-dp
g (p)-(1—X) g (1
_fO [Bl(p)-tJ”(p)-(HX) Eile)de (2)

where X=A-exp(—2jB(p)L).

We are going to use the orthogonality properties be-
tween the modes of the same region in order to derive a set
of coupled integral equations between the unknown coeffi-
cients a, (n>>1), g’(p), and g’(p). We first multiply (1) and
(2) by E'(p) and use orthogonality, then multiply again the
transformed (1) by ,8l before adding up; we obtain the
following equation:

e ): B](P). 1
1P wpoP (Bl(l_X)+:31(P)(1+X))

[ S a (BB [ r by Eilp)-ar

n>1
+[Cae),

+t(p)

~B()) [ rEi(o') Ei(p')-drdp

: incident TE,; mode. ----

oN

: incident TMy; mode.

with
:(p) 1
wpoP (B(1-X)+Bi(p)(1+X))

xzplfowr-E;-E,;(p).dr.

The function #(p) does not depend on the unknown
coefficients; furthermore, it has an analytical expression
and represents the solution obtained by neglecting the
reflected continuous and guided (n>1) waves. After simi-
lar operations we obtain

()= s [ (oM B - X)

=B+ X)) ["r-Ef(0) Eilp)-dr-dp (4)

t(p)=

| = sa o @ B0-0[ ]800+ 0)

[T EB) Bipedrdo | 8

Resolution of this coupled integral equation system ((3)-
(5)) is then achieved by using an iterative procedure, the
Neuman series solution [14] in which #(p) is the first-order
solution for ¢’(p). Further details on this resolution have
been given in a previous paper [13].

Equation (6) and the power conservation equation (7)
are tests of the validity of the method.

1—2 @+ [la(p) 2 dp+(1-8) [* Yo (o) do.
()

n>1]
n=0]"

A. Numerical Results
1) Abruptly Ended Dielectric Rod (e,,=1, No Metallic
Plane): Fig. 3(a) and (b) illustrates the variations of the
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moduli and of the phases of the reflection coefficient a, of
the TE,, and TM,,; mode incident on the discontinuity (for
two values of the relative permittivity: ¢, =35 and ¢, =63).
We observe that the moduli increase with the permittivity
for the two excitations. The modulus of the reflection
coefficient of the TM excitation remains quite negligible in
a large range of the normalized frequency after the cutoff.
This feature corresponds to an important leakage of the
energy by coupling with the radiative continuous modes.
For the TE,, mode, this behavior appears only at the
cutoff frequency. As expected when the normalized
frequency increases, the reflection coefficients a, for the
TE,, as well as for the TM,, excitations tend towards the

limit
Je, —1

==
Je, +1
2) The Substrate-Plugged Rod Discontinuity: In Fig. 4,
we have plotted the evolution of the phase of the reflection
coefficient a, for the TE, excitation. In this case, as there
is a perfect electric wall near the dielectric rod (L=0.0635
cm), the modulus of the reflection coefficient is quite close

a

to 1, whatever the normalized frequency value.

3) Accuracy of the Method: Accuracy of the computed
results based upon (6) and (7) is illustrated by Table 1. The
square modulus of the reflection coefficient deduced either
directly from (5) or from the power conservation integral
(7) are in very good agreement. Each calculated point
needs only 2 min of CPU time (4 iterations).

III.

The electromagnetic parameters of the resonant mode in
a cylindrical dielectric resonator can be found from the
rigorous analysis of the two interacting discontinuities we
have studied separately just before.

It then becomes necessary to distinguish the discontinu-
ity parameters a,(n>1), ¢'(p), and g’(p) by additive su-
perscripts I and II, depending on their type at z=0 and at
z=H (see Fig. 5).

For the dielectric resonator problem, the rigorous and
complete equations can be expressed by writing the con-
tinuity relation between the transverse field components on
both sides of the two discontinuities. As for the single
discontinuity problem, the orthogonality relations change

THE DIELECTRIC RESONATOR PROBLEM
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the continuity equations into a coupled integral equation
set. The resonant frequency can be determined by testing
the maximum of the trapped energy in the resonator and
the radiation Q-factor can be obtained by the sharpness of
the resonance curve versus the frequency or by the basic
definition
reactive energy
average radiated power

O=w

This rigorous formulation of the resonator problem
suffers from an intrinsic weakness; it requires too long
numerical calculations because the search for the resonant
frequency requires, for each of trial frequencies, a complete
resolution of the coupled integral system.

So, it is interesting to define a method which requires a
shorter computation time. In the rigorous problem, we
must consider that the incident wave on a discontinuity is a
superposition of the guided resonant mode and of all the
continuous modes created by the other discontinuity. But,
from the previous theoretical development, it is possible to
show that the power coupled by these continuous modes to
the guided mode can be neglected whatever the permittiv-
ity. In this condition, we can consider that the guided
mode reflected by a discontinuity results only from a
coupling with the incident guided mode.

According to this remark, we can use directly the reflec-
tion coefficient obtained separately with the two types of
discontinuities. The knowledge of the (w-8) diagram of
the resonant mode, and of the reflection coefficient of the
two discontinuities leads to use of the “transmission-line
theory” to calculate the height H of the dielectric resonator
to achieve a constructive phenomenon at the resonant
frequency. The radiation Q-factor is derived from (8) which
can be expressed as

0=2fH/|v,(1-|a}?)]
for the isolated resonator (a} =al') and as
0=4fH /v, (2~|ai|*~|a]'*)]
for the resonator on substrate. In the preceding formulas,
v, denotes the group velocity of the guided mode in the

g
dielectric rod.

A. Results on Cylindrical Dielectric Resonators

1) The Isolated Resonator: The resonant frequencies of
TE 5 and TM, s modes of an isolated resonator versus its
D /H ratio are represented Fig. 6. Our results are in good
agreement with those of Guillon [7], particularly for sam-
ples with very high permittivity. For such samples, the
continuous radiated modes hardly influence the behavior
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of the resonator, so conventional methods of analysis fit
quite well [7], [8]. In fact, the main interest of our method
is to determine the radiation Q-factor of the resonator. Fig.
7(a) and (b) presents the behavior of the radiation quality
factor versus the geometric parameter D/H for the two
considered excitations. In these figures, the results achieved
by the Verplanken approach [9], [10] have been also drawn.
If the behavior of these curves is slightly identical, a
quantitative agreement is only obtained for the TM,, exci-
tation and for high-permittivity materials.

From the two analyses, the optimal D /H ratio is about

“on-substrate resonator.”

1.5 for the magnetic dipolar mode and 3 for the electric
dipolar mode.

2) The resonator on substrate: Fig. 8 shows the behavior
of the resonant frequencies of the TE;; mode for the
isolated and on-substrate resonators and for two values of
permittivity (e, =355 and ¢, =65). Our experimental re-
sults are in good agreement with the theoretical predic-
tions.

In Fig. 9, we present the variations of the radiation
Q-factor for a resonator placed on an alumina substrate
(€,=9.6, L=0.0635 cm) versus the quantity D/H for a
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given resonant frequency F=5 GHz. In this case, the
optimum of the Q-factor is obtained for D/H comprised
between 1 and 1.3.

IV. CoNCLUSION

The scattering mechanism of the TE;; and TM,, modes
incident in transversal dielectric rod discontinuities is
analyzed by means of an integral formulation. The numeri-
cal solution is achieved by iteration via the conventional
Neuman series.

This analysis allows to build a new approach for treating
the resonator problem. Though we present results only for
the TE;, and TM,, modes, this theory is valid for all the
other excitations and can be extended to composite struc-
tures such as coaxial resonators. Moreover, it can be used
whatever the permittivity and gives directly the radiation
quality factor of the resonators.

APPENDIX
TRANSVERSE FIELDS OF THE GUIDED AND CONTINUOUS
MODES IN THE TWO REGIONS
A. Guided TE,, Modes in Region I
The transverse fields in region I can be expressed as

A9 (K,r), r<a,
Eg, = $(K,a) a=d/2.
" A=K (), r=a,
%I(Yna) 1( )
K2:k2'6 _n2
H =— A, Ej,,  withq 7 ’23".
Wi Yn :Bn _kO

The characteristic equation is obtained by the continuity
relation of the fields H,, and E,, at r=a

f1(Ka) | K, Hy(vea) _

W(Ka) T v, To(na)

The constant 4, is determined from the power-flow nor-
malization
1

2@ O .
P—E/(; fo r-Ey,-H, -dr-df—>A,

2wpy P
Na’8,(1+K; /1) 19o(K,a)-§(K,a)] -

B. Continuous TE Modes in Region I

In region I, the transverse fields are

B (or), r<a
Fite)= B-[CY.(pr)+DN\(pr)],  r=a
o’ =ki-e,—B*(p)
H;(p):——‘jfT"o)E;(m, wit | 7= =)
pE[0  oof.

The continuity relation at =g and the power-flow normal-
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ization give constants B, C, and D

P-B(p) 1 f2n
= ooy =2k [ Eoo) i (p)-dra
(see [13])
C= 3 pa| 1(00)9N(p) 25 0) . (o)
D= pa| 1 (a)fu(pa) = 2 (o) (o)

prwpoP

B= .
\/Hlﬁ(p)l(C“rDz)
For the reflected mode we can write

E"(p)=E'(p)

and
H/(p)=—H(p).

C. Continuous TE Modes in Region II

The expression of the fields in region II can be written as
E"™(p)=E'(p)=B"$(pr)

H’*(p)zH’(p)Z—iL:O)E’(p)
with

*=ki-¢,~BHp) and B’ (wuoP-p )‘/2
=kjyoe,— an = .
p 0 *rl \p H,B](P),

For the modes reflected by the metallic plane we can write
E(p)=E‘(p) and H' (p)=—H'(p).

REFERENCES

[1] R.D. Richtmyer, “Dielectric resonators,” J. Appl. Phys., vol. 10, pp.
391-398, June 1939.

[2] H. M. Schlicke, “Quasi degenerated modes in high permittivity
dielectric cavities,” J. Appl. Phys., vol. 24, pp. 187191, Feb. 1953.

[3] A. Okaya, “The rutile microwave resonator,” Proc. IRE, vol. 48, p.
1921, Nov. 1960.

[4] Y Yee, “An investigation of microwave dielectric resonators,”
Microwave Lab. Rep. 1065, Stanford University, Stanford, CA, July
1963.

[5] A. Okaya and L. F. Barash. “The dielectric microwave resonator,”
Proc. IRE, vol 50, pp. 2081-2092, Oct 1962.

[6] S. B. Cohn, “Microwave bandpass filters contaimng high-Q dielec-
tric resonators,” IEEE Trans. Microwave Theory Tech., vol. MTT-16,
pp. 218-227, Apr. 1968.

[7] P. Guillon and Y. Garault, “Accurate resonant frequencies of
dielectric resonators,” IEEE Trans. Microwave Theory Tech., vol.
MTT-25, pp. 916-922, Nov. 1977.

[8] T. Itoh and R. S. Rudokas, “New method for computing the
resonant frequencies of dielectric resonators,” IEEE Trans. Micro-
wave Theory Tech., vol. MTT-25, pp. 5254, Jan. 1977,

[9] M. Verplanken and J. Van Bladel, “The electric dipole resonances

of ring resonators of very high permittivity,” IEEE Trans. Micro-

wave Theory Tech., vol. MTT-24, pp. 108—112, Feb. 1976.

M. Verplanken and J. Van Bladel, “The magnetic dipole resonances

of ring resonators of very high permittivity,” IEEE Trans. Micro-

wave Theory Tech., vol. MTT-27, pp. 328-334, Apr. 1979.

P. Gelin, M. Petenzi, and J. Citerne, “New rigorous analys:s of the

step discontinuity in a slab dielectric waveguide,” Flectron. Lett.,

[10]

(11



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-29, NO. 7, JULY 1981

vol. 15, no. 12, pp. 355-356, June 1979.

P. Gelin, M. Petenzi, P. Kennis, and J. Citerne, “Analysis of the
scattering mechanism in an abruptly ended rod dielectric wave-
guide. Application to the determination of the characteristics of
dielectric resonators, presented at the MTT Symposium 1980,
Washington, DC.

(12]

719

(13] P. Gelin, M. Petenzi, and J. Citerne, “Rigorous analysis of the
scattering of surface waves in an abruptly ended slab dielectric
waveguide,” TEEE Trans. Microwave Theory Tech., vol. MTT-29,
pp. 107-114, Feb. 1981.

C. T. H. Baker, The Numerical Treatment of Integral Equations.
Oxford, England: Clarendon, 1977.

(14]

Analysis and Sensitivity Evaluation of
2 p-Port Cascaded Networks
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‘

Abstract— An exact analysis approach for efficiently evaluating the
response and its sensitivities with respect to all design parameters for
cascaded 2 p-port networks is presented for any value of p. It is illustrated
via a quasi-optical bandpass filter.

I. INTRODUCTION

GENERALIZATION of an analysis approach for

2-port cascaded networks [1] to handle 2 p-port net-
works is presented. The generalized approach has the same
advantages. as those for 2-port networks. These advantages
include efficient and fast analytical and numerical investi-
gations of response, first-order sensitivities of the response
with respect to variable parameters, and. large-change
sensitivities. The need for this generalization evolved from
the fact that many microwave networks are represented as
a cascade of 2 p-port elements.

Thevenin and Norton equivalents for these cascaded
networks can be obtained systematically using this ap-
proach. These in turn are very useful for worst case analy-
sis [2]. As an example, a quasi-optical bandpass filter has
been analyzed using this approach and the exact sensitivi-
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ties of the response with respect to a parameter appearing
in two of the 2p-port elements, representing the filter
elements, have been evaluated.

II. THEORY

The analysis approach consists of two principal types.
The first, which we call the forward analysis, consists of
initializing a U matrix as E or EJ, which are defined as

E 2 lp] E 2 01)}
1= 2=
0, 1,
where 1, is the unit matrix of order p, 0, is the null matrix

of order p, and successively premultiplying each constant
chain matrix by the resulting matrix until an element of
interest (which contains a variable parameter), a reference
plane, or a termination is reached. The second type of
analysis is the reverse analysis which consists of initializing
a ¥V matrix as either E, or E, and successively postmultiply-
ing each constant matrix by the resulting matrix until an
element of interest, a reference plane, or a termination is
reached.

Consider the 2 p-port element shown in Fig. 1, possess-
ing p input ports and p output ports. Its transmission
matrix is given by

where 4,,, Ay,, 4,,, and A,, are p Xp matrices. The input
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