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A bstract— Our purpose is to determine the resonance frequency to-

gether with the radiation quality factor of dielectric resonators. To do that,

the reflection and the scattering properties of the TEO1 and TMol modes,

incident on an abruptly ended dielectric rod, are analyzed. After the

building of the complete mode spectrum on each side of the discontinuity,

the continuity relations in the discontinuity plane associated with the

orthogonality properties lead to a coupled integraf equation system. That

one is solved by means of an iterative procedure, providing all the char-

acteristics of the discontinuity (reflection or coupling coefficients, radiation

losses). Then, these solutions are used to determine the resonant frequency
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and the radiation quality factor of cyfindricaf resonators which are consid-

ered as wavegoide lengths between two interacting dkcontinuities.

I. INTRODUCTION

I N THE LAST FEW YEARS, the availability of dielec-

tric materials with high relative permittivity has given a

great impact on the use of dielectric resonators in micro-

wave integrated circuits (passband filters, stabilized solid-

state sources).

The concept of dielectric resonator has been proposed in

[1] as far back as 1939. The first analysis of the magnetic

dipole resonance of cylindrical dielectric resonators of very

high permittivity was treated under the assumption that all
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Fig. 1. The cylindrical dielectric resonator.

Fig. 2.
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(a) The substrate plugged discontinuity. (b) The abruptly ended
discontinuity.

the cavity boundary surfaces are magnetic walls [2], [3].

This hypothesis did not agree with the experimental results.

So the theory has been improved in [4]- [6] by considering

only the extended cylindrical boundary surface as a mag-

netic wall, the fields decreasing from the flat surfaces

outside the resonator in a restricted part of the space. A

more satisfactory approach [7], [8] consists in having the

field leakage through the cylindrical surface into regions 4

and 5 (see Fig. 1) and through the flat surfaces into regions

2 and 3. At this stage of the study, for the high perrnittivi-

ties, the calculated and experimental resonant frequencies

are in very good agreement though these methods do not

take into account the electromagnetic fields in the shaded

areas. Nevertheless, no information on the radiation losses

of this device can be expected. Only the asymptotic solu-

tion proposed by Verplanken [9], [10] allows the determina-

tion of the radiation quality factor and takes into account

the field penetration in the whole space outside the resona-

tor.

In this paper, we present a quite different and new

analysis of the cylindrical resonator. This analysis proceeds

in two steps. First, we study the electromagnetic behavior

of an abruptly ended dielectric rod in the two cases which

are presented in Fig. 2, with incident TEOI and TMO1

modes. The technique which is used consists of transform-

ing the continuity relations obtained by matching the

transverse electromagnetic fields at the discontinuity inter-

face into coupled singular integral equations. Then, these

equations are solved via the conventional Neuman series

solution [11 ]– [ 13]. In a second step, we take into account

the interaction between such discontinuities in order to

determine the resonant frequency and the radiation quality

factor of dielectric resonators.

II. DISCONTINUITY ANALYSIS

Our purpose is to derive the resonant frequencies to-

gether with the radiation Q-factors of the magnetic and

electric dipole mode (TE018, TM018 ) of a cylindrical dielec-

tric resonator. The trapped waves for the “on substrate”

resonator are reflected by two types of discontinuities: the

abruptly ended discontinuity and the substrate plugged

discontinuity [Fig. 2].

We focus our attention on the substrate plugged rod

configuration, as shown in Fig. 2, which can be changed

into an abruptly ended one by choosing L= ee and Crl = 1.

The waves are incident from the left on the discontinuity,

and the problem is to find the reflection and the scattering

coefficients of these incident waves. For brevity’s sake,

only the TEOI excitation is treated in detail. The extension

to the TMOI case presents no additional difficulty.

In the discontinuity plane z= O, we have to match the

tangential electric and magnetic fields which are azimuthal

(subscript 6) and radial (subscript r), respectively, The

continuity relations can be expressed as

incident reflected reflected continuous
Y guided modes P modes

transmitted continuous modes

The fields of the left-hand side of the above equation is a

superposition of the incident guided TEO1 mode (super-

script i), of the reflected TEO~ guided modes (n > 1), and of

the reflected continuous TE modes (superscript r) in region

I. On the right-hand side of this equation, we have a

superposition of the transmitted continuous TE modes in

region II (superscript t+ for the modes incident towards

the metallic plane, superscript t – for the others reflected

on the metallic plane). The constant al is the reflection

coefficient of the incident TEOI mode while the constants

an (n> 1) are the coupling coefficients of the incident

mode on the reflected and guided TEO. modes in region I.

The functions q’(p) are the coupling amplitudes of the

backward-scattered continuous modes in region 1. Back-

ward and forward coupling amplitudes of transmitted con-

tinuous modes in region II are denoted by functions q’(p)

and qt– ( p), respectively. The variable p is both the trans-

verse wavenumber outside the rod in region I and the

transverse wavenumber inside the dielectric plug. If we

denote ~(p) and @l(p) the phase constants of the continu-

ous modes in region I and in region II, respectively, then

these transverse wavenumbers can be defined as

p2=k&f12(p) or p2=k~. c,l -R(P)>

with k. =Q&,

The boundary condition at the metallic plane (z= L),

provides a simple relation between functions q’+(p) and

q’-(p), namely

~’-(P) =–q’+(p)-exp(–2 jP,(p)L).

If we introduce an indicator A, with A= 1 if the metallic

plane exists, and A= O if the metallic plane is removed, we
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Fig. 3. (a) Moduli of the reflection coefficient a, for the abruptly ended
discontinuity. — : incident TEOI mode. ----: incident TMO1 mode. (b)
Phases of the reflection coefficient a, for the abruptly ended discontinu-
ity. — : incident TEO1 mode. ----: incident TMOI mode.

can treat the abruptly ended circular dielectric waveguide

together with the substrate plugged discontinuity by rewrit-

ing the above boundary condition as

q’-(~) =–#+(p)-A”exp(- 2jA(p)L).

Taking account of the simple relations in the two regions

between the backward and forward electric and magnetic

fields [see Appendix], the general mode match@g equations

at z= O can, consequently, be written as follows:

[~i::.l)]E;l+~,[J.n]E~n
+Jm[:j;)q(p)]~~(~)”~~

m q’+(p) .(1-x)J[
1

(1)——

o P,(P) ”#+(P)”(l +x) ‘;(p)”dp (2)

where X= A.exp(–2j~1(p)L).

We are going to use the orthogonality properties be-

tween the modes of the same region in order to derive a set

of coupled integral equations between the unknown coeffi-

cients an (n> 1), q’(p), and qt(p). We first multiply (1) and

(2) by E’(p) and use orthogonality, then multiply again the

transformed (1) by ~1 before adding up; we obtain the

following equation:

‘;::$’)“ (/3,(1-x)+ ;,(P)(l+q)~t+(p)=

[

. ~ an(p, -pn)pqn.q(p).dr
n>l

+t(p) (3)

with

@l(P)

‘(p)= Upol’ (Bl(l–x)+j, (p)(l+x))

X2~1~~r.E~.E~(p).dr.
o

The function t(p) does not depend on the unknown

coefficients; furthermore, it has an analytical expression

and represents the solution obtained by neglecting the

reflected continuous and guided (n> 1) waves. After simi-

lar operations we obtain

?@(p) 1q’(p)=__ J%+(P) (B(P)O-X)6JpoP 2p(p) o

‘~l(p)(l+x))~mr-E~( p)”E~(p)”drdp (4)

Resolution of this coupled integral equation system ((3)-

(5)) is then achieved by using an iterative procedure, the

Neuman series solution [14] in which t(p) is the first-order

solution for q~(p ). Further details on this resolution have

been given in a previous paper [13].

Equation (6) and the power conservation equation (7)

are tests of the validity of the method.

1= ~ \a.12+~’0]qr(p),2 dp+(l-A)~~0[q[+(p),2 dp.
n>] o

(7)

A. Numerical Results

1) Abruptly Ended Dielectric Rod (c,, = 1, No Metallic

Plane): Fig. 3(a) and (b) illustrates the variations of the
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modtdi and of the phases of the reflection coefficient a ~ of

the TEO1 and TMOl mode incident on the discontinuity (for

two values of the relative permittivity: c,= 35 and c, = 65).

We observe that the moduli increase ,with the permittivity

for the two excitations. The modulus of the reflection

coefficient of the TM excitation remains quite negligible in

a large range of the normalized frequency after the cutoff.

This feature corresponds to an important leakage of the

energy by coupling with the radiative continuous modes.

For the TEOI mode, this behavior appears only at the

cutoff frequency. As expected when the normalized

frequency increases, the reflection coefficients al for the

TEOI as well as for the TMOI excitations tend towards the

limit

2) The Substrate-Plugged Rod Discontinuity: In Fig. 4,

we have plotted the evolution of the phase of the reflection

coefficient a ~ for the TEOI excitation. In this case, as there

is a perfect electric wall near the dielectric rod (L= 0.0635

cm), the modulus of the reflection coefficient is quite close

for the TMO1 case ; f.d. (GHz. cxu)

to 1, whatever the normalized frequency value.

3) Accuracy of the Method: Aeeuracy of the computed

results based upon (6) and (7) is illustrated by Table I. The

square modulus of the reflection coefficient deduced either

directly from (5) or from the power conservation integral

(7) are in very good agreement. Each calculated point

needs only 2 min of CPU time (4 iterations).

III. THE DIELECTRIC RESONATOR PROBLEM

The electromagnetic parameters of the resonant mode in

a cylindrical dielectric resonator can be found from the

rigorous analysis of the two interacting discontinuities we

have studied separately just before.

It then becomes necessary to distinguish the discontinu-

ity parameters an(n > 1), qr(p), and qt(p) by additive su-

perscripts I and II, depending on their type at z = O and at

z =H (see Fig. 5).

For the dielectric -resonator problem, the rigorous and

complete equations can be expressed by writing the con-

tinuity relation between the transverse field components on

both sides of the two discontinuities. As for the single

discontinuity problem, the orthogonality relations change
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Fig. 6. Resonant frequencies of the TE0,6 and TM018 modes for an
isolated resonator. — : our results. ----: Guillon’s results.

continuity equations into a coupled integral equation

The resonant frequency can be determined by testing

maximum of the trapped energy in the resonator and

the radiation Q-factor can be obtained by the sharpness of

the resonance curve versus the frequency or by the basic

definition

Q=ti
reactive energy

average radiated power”

This rigorous formulation of the resonator problem

suffers from an intrinsic weakness; it requires too long

numerical calculations because the search for the resonant

frequency requires, for each of trial frequencies, a complete

resolution of the coupled integral system.

So, it is interesting to define a method which requires a

shorter computation time. In the rigorous problem, we
must consider that the incident wave on a discontinuity is a

superposition of the guided resonant mode and of all the

continuous modes created by the other discontinuity. But,

from the previous theoretical development, it is possible to

show that the power coupled by these continuous modes to

the guided mode can be neglected whatever the permittiv-

ity. In this condition, we can consider that the guided

mode reflected by a discontinuity results only from a

coupling with the incident guided mode.

According to this remark, we can use directly the reflec-

tion coefficient obtained separately with the two types of

discontinuities. The knowledge of the (c@) diagram of

the resonant mode, and of the reflection coefficient of the

two discontinuities leads to use of the “transmission-line

theory” to calculate the height H of the dielectric resonator

to achieve a constructive phenomenon at the resonant

frequency. The radiation Q-factor is derived from (8) which

can be expressed as

Q=2fH/[og.(1-[a; l’)]

for the isolated resonator (al = a~l) and as

for the resonator on substrate. In the preceding formulas,

Og denotes the group velocity of the guided mode in the

dielectric rod.

A. Results on Cylindrical Dielectric Resonators

1) The Isolated Resonator: The resonant frequencies of

TE018 and TM018 modes of an isolated resonator versus its

D/H ratio are represented Fig. 6. Our results are in good

agreement with those of Guillon [7], particularly for sam-

ples with very high permittivity. For such samples, the

continuous radiated modes hardly influence the behavior
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of the resonator, so conventional methods of analysis fit

quite well [7], [8]. In fact, the main interest of our method

is to determine the radiation Q-factor of the resonator. Fig.

7(a) and (b) presents the behavior of the radiation quality

factor versus the geometric parameter D/H for the two

considered excitations. In these figures, the results achieved

by the Verplanken approach [9], [10] have been also drawn.

If the behavior of these curves is slightly identical, a

quantitative agreement is only obtained for the TMOI exci-

tation and for high-permittivity materials.
From the two analyses, the optimal D/H ratio is about

Q
400 I
3oo-

200-

100-

L ..0635 cm

E*=35

~

Fig. 9. Variation of the radiation Q-factor of the TEO,O mode for an
“on-substrate resonator.”

1.5 for the magnetic dipolar mode and 3 for the electric

dipolar mode.

2) The resonator on substrate: Fig. 8 shows the behavior

of the resonant frequencies of the TEOl& mode for the

isolated and on-substrate resonators and for two values of

permittivity (c, = 355 and c,= 65). Our experimental re-

sults are in good agreement with the theoretical predic-

tions.

In Fig. 9, we present the variations of the radiation

Q-factor for a resonator placed on an alumina substrate

(c,, =9.6, L= O.0635 cm) versus the quantity D/H for a
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given resonant frequency F= 5 GHz. In this case, the ization give constants B, C, and D

optimum of the Q-factor is obtained for D/H comprised

between 1 and 1.3.
P./3(p) 1 2W m

9= l~(p)l ‘~~ ~ ~“EO(P)H,(p)”drd@

IV. CONCLUSION (see [13]]

The scattering mechanism of the TEO1 and TMOI modes

incident in transversal dielectric rod discontinuities is
C=~~a[%l(ua)~O( ~a)-~jO(ua)~l(Pa)]

analyzed by means of an integral formulation. The numeri-
.

cal solution is achieved by iteration via the conventional
[

D=–~PU $l(U~)$O(~a)–~$O(~~)$l(Pa)

Neuman series. 1
This analysis allows to build a new approach for treating

the resonator problem. Though we present results only for

the TEOI and TMOI modes, this theory is valid for all the “a

other excitations and can be extended to composite struc- For the reflected mode we can write
tures such as coaxial resonators. Moreover, it can be used

whatever the permittivit y and gives directly the radiation E’(p) =EL(p)

quality factor of the resonators. and

APPENDIX
H;(p) =–H;(p).

TRANSVERSE FIELDS OF THE GUIDED AND CONTINUOUS

MODES IN THE Two REGIONS C. Continuous TE Modes in Region II

A. Guided TEO~ Modes in Region I The expression of the fields in region 11 can be written as

The transverse fields in region I can be expressed as E’+(p)=E’(p)=Bt. $,(pr)

H;n = – &;n,
{

K;=k; .c, –&?
with

up o y;=@~2 –k; “

The characteristic equation is obtained by the continuity

relation of the fields H,. and Ed. at r= a

$,(%a) K, ~l(Y.a) no

$O(Kn~) ‘Y XO(yna) “

The constant A. is determined from the power-flow nor-

malization

~=~ 2. ~

J.i200
r.E;~.H;~ .dr.d13~A~

2apoP

IIa213.(l +K~/y~).l$o(K.a) .$2( Kna)\ “

B. Continuous TE Modes in Region 1

In region I, the transverse fields are

{

%i(ur),
E;(p)=

r<a

B.[C$l(pr)+D%,( pr)], r>a

W(P)= -+E;(P), with

The continuity relation at r= a and

For

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Ip2=k; –~2(p)

and
[10]

pe[o Cx)[.
[11]

the power-flow normal-

the modes reflected by the metallic plane we can write

E’-(p) =E’(p) and H’-(p) =–H’(p).
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Analysis and Sensitivity Evaluation of
2p-Port Cascaded Networks

JOHN W. BANDLER, FELLOW, IEEE, AND MOHAMED R. M. RIZK, MEMBER, IEEE

.4 bstract— An exact anafysis approach for efficiently evaluating the ties of the response with respect to
response and its sensitivities with respect to all design parameters for

cascaded 2p-port networks is presented for any vafue of p. Itis illustrated
in two of the 2p-port elements,

via a quasi-opticaf bandpass filter. elements, have been evaluated.

1. INTRODUCTION

A GENERALIZATION of an analysis approach for

2-port cascaded networks [1] to handle 2p-port net-

works is presented. The generalized approach has the same

advantages- as those for 2-port networks. These advantages

include efficient and fast analytical and numerical investi-

gations of response, first-order sensitivities of the response

with respect to variable parameters, and. large-change

sensitivities. The need for this generalization evolved from

the fact that many microwave networks are represented as

a cascade of 2p-port elements.

Thevenin and Norton equivalents for these cascaded

networks can be obtained systematically using this ap-

proach. These in turn are very useful for worst case analy-

sis [2]. As an example, a quasi-optical bandpass filter has

been analyzed using this approach and the exact sensitivi-
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a parameter appearing

representing the filter

II. THEORY

The analysis approach consists of two principal types.

The first, which we call the forward analysis, consists of

initializing a ~= matrix as ET or E;, which are defined as

where 1P is the unit matrix of order p, OPis the null matrix

of order p, and successively premultiplying each constant

chain matrix by the resulting matrix until an element of

interest (which contains a variable parameter), a reference

plane, or a termination is reached. The second type of

analysis is the reverse analysis which consists of initializing

a V matrix as either El or E, and successively postmultiply-

ing each constant matrix by the resulting matrix until an

element of interest, a reference plane, or a termination is

reached.

Consider the 2p-port element shown in Fig. 1, possess-

ing p input ports and p output ports. Its transmission

matrix is given by

[1A,,~gAll

A,, .4,2

where A ~,, A ,2, A ~1, and A ~, are p Xp matrices. The input
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